Amplitude-exponent relation for the correlation length in the (2+1)-dimensional Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L769
(http://iopscience.iop.org/0305-4470/20/12/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:45

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Amplitude-exponent relation for the correlation length in the (2+1)-dimensional Ising model

Malte Henkel
Physikalisches Institut der Universität Bonn, Nussallee 12, 5300 Bonn 1, Federal Republic of Germany

Received 11 May 1987

Abstract

For the critical ($2+1$)D Ising model defined on a square lattice with antiperiodic boundary conditions, numerical studies suggest relations among the critical exponents and the finite-size scaling amplitudes of correlation lengths similar to those obtained in ($1+1$) dimensions from conformal invariance.

For two-dimensional systems defined on an infinitely long strip of finite width N and periodic boundary conditions, it was shown that the hypothesis of conformal invariance at the critical point yields a relationship between the finite-size scaling amplitude A_{i} of the inverse correlation length $\xi_{i}^{-1}=A_{i} N^{-1}$ and the bulk critical exponent x_{i} (Cardy 1984, von Gehlen et al 1986)

$$
\begin{equation*}
A_{i}=2 \pi x_{i} . \tag{1}
\end{equation*}
$$

We raise the question of whether a linear amplitude-exponent relation like (1) is possible for three-dimensional models.

As an example, we study the ($2+1$) D Ising model, defined on a square $N \times N$ lattice. The Hamiltonian is (Henkel 1984, 1986, 1987)
$H=-h \sum_{n} \sigma^{z}(n)-\frac{1}{2} \sum_{\left(n, n^{\prime}\right)}\left[(1+\eta) \sigma^{x}(n) \sigma^{x}\left(n^{\prime}\right)+(1-\eta) \sigma^{y}(n) \sigma^{y}\left(n^{\prime}\right)\right]$
where nearest-neighbour interactions are understood and the $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices. Since, for $\eta=1, H$ is the Hamiltonian limit of the transfer matrix of the 3D Ising model, we have a geometry which is infinite in one direction but finite in the other two directions. For each $\eta \neq 0$, there is a critical point falling into the 3D Ising universality class. Both periodic and antiperiodic boundary conditions will be studied.
H commutes with the operator

$$
\begin{equation*}
Q=\frac{1}{2}\left(1-\prod_{n} \sigma^{2}(n)\right) \tag{3}
\end{equation*}
$$

and the corresponding eigenspaces are called sector 0 and sector 1 , according to the eigenvalues of Q. The inverse spin-spin correlation length ξ_{0}^{-1} is the energy gap between the two lowest lying states in the two sectors and the inverse energy-energy correlation length ξ_{ε}^{-1} is the gap between the ground state and the first excited state in sector 0 .

Since one does not leave the 3D Ising universality class by varying η, one can check explicitly the universality of the quantities considered. In a previous letter, it was already shown that the ratio $A_{\varepsilon} / A_{\sigma}$ of the scaling amplitudes does not depend on η (Henkel 1986), in agreement with the Privman-Fisher (1984) hypothesis.

Table 1. Ratio of the finite-size scaling amplitudes $A_{\varepsilon} / A_{\sigma}$ for periodic and antiperiodic boundary conditions for some values of the (irrelevant) coupling η.

η	1.0	0.9	0.7	0.5	0.3
Periodic	3.64	3.64	3.66	3.67	3.5
Antiperiodic	2.76	2.78	2.70	2.80	2.77

In table 1 , we give the ratio $A_{\varepsilon} / A_{\sigma}$, computed at the critical point $h_{c}(\eta)$, for both periodic and antiperiodic boundary conditions. Taking the mean values, we have $A_{\varepsilon} / A_{\sigma}=3.62$ (7) for periodic and $A_{\varepsilon} / A_{\sigma}=2.76$ (4) for antiperiodic boundary conditions, respectively. The numbers in brackets give the uncertainty in the last digit.

In order to check for a linear relation $A \sim x$, we have to compare with $x_{\varepsilon} / x_{\sigma}=2.76$ (2) (see Henkel 1987 and references therein). We can conclude that a relation like equation (1) between the bulk critical exponent and the finite-size scaling amplitude of the correlation length is ruled out for periodic but is strongly supported for antiperiodic boundary conditions. Since the normalisation of the Hamiltonian is arbitrary, we cannot determine the proportionality constant in $A \sim x$.

Investigations in other models will show whether the conjecture presented is specific to the Ising model or general. It was argued by Cardy (1985) that (1) holds, provided the Hamiltonian is defined on the surface of a sphere rather than on a torus, as in the present work.

References

Cardy J L 1984 J. Phys. A: Math. Gen. 17 L385

- 1985 J. Phys. A: Math. Gen. 18 L757

Henkel M 1984 J. Phys. A: Math. Gen. 17 L795

- 1986 J. Phys. A: Math. Gen. 19 L247
- 1987 J. Phys. A: Math. Gen. 203969

Privman V and Fisher M E 1984 Phys. Rev. B 30322
von Gehlen G, Rittenberg V and Ruegg H 1986 J. Phys. A: Math. Gen. 19107

